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ABSTRACT: The double-homodyne and the heterodyne detection schemes for phase shifts between

two synchronous modes of the electromagnetic field are analyzed in the framework of quantum

estimation theory. The probability operator-valued measures (POM's) of the detectors are evaluated

and compared with the ideal one in the limit of strong local reference oscillator. The present

operational approach leads to a reasonable definition of phase measurement, whose sensitivity is

actually related to the output r.m.s, noise of the photodetector. We emphasize that the simple-

homodyne scheme does not correspond to a proper phase-shift measurements as it is just a zero-point

detector. The sensitivity of all detection schemes are optimized at fixed energy with respect to the

input state of radiation. It is shown that the optimal sensitivity can be actually achieved using suited
squeezed states.

1 Introduction

Weak forces on macroscopic bodies in interferometric arrangements or, more generally, minute variations

of environmental parameters in optical fibers are detected through the induced changes in the optical

paths of the light beams. The detection of the induced phase-shift represents one of the most sensitive

measurement on radiation in order to monitor such small perturbations. The back-action effect on the

measured parameter due to the radiation pressure imposes limitations on the radiation intensity, and

improvements of the sensitivity can only be achieved by suited preparation of the input quantum state.

In this paper a narrowband analysis of some relevant phase detection schemes is presented (a muitimode

wideband analysis can be found in [1]). Classically a phase-shift measurement in an interference experiment

can be directly related to the polar angle between two quadratures of one field-mode, which in turn are

given by two output photocurrents. Quantum mechanically the quadratures of the field are noncommuting

observables and their relative polar angle cannot be interpreted as a selfadjoint operator, as in the early

Dirac's heuristic approach [2]. The osciUator phase is not an observable in usual sense, and the problem

of identifying its quantum dynamical counterpart has provoked many discussions in the literature (see, for

example, [3, 4, 5] and references therein). Among the numerous attempts the limiting procedure of Pegg

and Barnett [3] has become the most popular technique, because it allows the evaluation of expected values

with very simple and reliable rules. However, despite its simplicity and effectiveness as a mathematical

tool, this approach has no obvious physical interpretation, and leaves most of the conceptual problems

on phase detection still open. The actual problem of a phase measurement description does not concerns

with a definition of a selfadjoint operator, but with an operative recipe to evaluate the phase statistics in

a real measurement, starting from the knowledge of the density matrix of the input radiation. On these

lines the most appropriate approach to the phase detection of the field is the quantum estimation theory

of [4]. Even though it easy to show that this method is equivalent in the end to the Pegg and Barnett

procedure (see [8] for more details), nevertheless it provides a physically meaningful scheme for the phase

measurement where all conceptual problems disappear. Despite it has long been recognised as the most

natural framework for analyzing any kind of quantum detection, the quantum estimation theory has not
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gained the necessary popularity yet, perhaps due to the fact that its main ingredient--the probability

operator measure (POM)--is generally a nonorthogonal spectral decomposition, and thus appears to be

in conflict with the conventional dictum of quantum mechanics that only "observables "--i.e. orthogonal

POM's_ be measured. This point has been well clarified in some papers (see for example [8]), where

it is shown that nonorthogonal POM's correspond to actual observables on a larger HUbert space which

includes also modes pertaining the measuring apparatus (all together referred to as "probe"). It is dear

that this assertion provides the proper quantum setting for the operational point of view of [11], where the

dependence of the measured operator on the detection scheme just corresponds to the involvement of the

probe variables in the measuring process, involvement which becomes unavoidable when the phase of the
field is detected.

Any quantum measurement needs a classical final stage and for measurement on radiation this is essentially

a photodetection. Moreover a proper measurement of the quantum phase has to be related to the detection

of a quantity which itself is a phase, i.e. is defined on the unit circle. In this sense we distinguish between

two main different classes: the genuine phase detection schemes and the measurements of a single phase-

dependent observable. In the former class, the phase-shift of the field is related to the polar angle between

two measured photocurrents which, in turn, correspond to a couple of two conjugated quadratures of

the field. Such scheme is the only viable one for phase detection, and corresponds equivalently to either

heterodyning or double-homodyning the field. This also clarifies the subtle nature of the phase itself

which, despite being a single real parameter, nonetheless requires a joint measures of two conjugated

operators. In contrast, in the second class of measurements, only a single observable is detected--typically,

when homodyning a single-quadrature of the field. Here we want emphasize that a single-quadrature

measurement cannot be used to infer the value of the phase, because the knowledge of a quadrature would

require an additional measurement on the field--essentially its intensity--which unavoidably would destroy

the information on phase. Thus, the single.homodyning scheme can be used only as a zero-phase monitoring

technique, which, however, is the essential of a typical interferometric measurement. In order to stress the

operational nature of POM approach here we also present, as an example, a numerical simulation of a real

experiment, reproducing the classical output photocurrents due to a particular quantum state, and then

evaluating the phase statistics as the polar angle distribution.

After selecting a measurement procedure-elther ideal or feasible--the statistics of the detected phase can

be further improved at fixed total energy by looking for optimal states of the field. We show that the r.m.s.

phase sensitivity versus the average photon number fi is bounded by the ideal limit A_ -_ fi-1, whereas

for the feasible schemes the bound is A_ _ _-2/a, in between the shot noise level A_ ,_ _-I/2 and the

ideal bound. The latter can actually be achieved by single-homodynlng suitable squeezed states, but only

in the neighborhood of a fixed zero-phase working point. The requirement of detecting the whole phase

probability distribution makes the proper phase measurement less sensitive than in the case of a zero-point

detection and the state achieving the two bounds are dramatically different: they are weakly squeezed

(about 2% of squeezing photons) for the double-quadrature measurement, whereas they become strongly

squeezed (50%) for one-quadrature detection.

Sect.2 is devoted to the theory of phase measurements, with a detailed analysis of the various schemes.

Subsect. 2.1 is a brief review of the quantum estimation approach. Subsect. 2.2 presents some remarks

and criticisms about the different definitions of sensitivity. Detection of the phase through simultaneous

measurement of two quadratures of the field are discussed in Subsects. 2.3 and 2.4, which are dedicated

to double-homodyne and heterodyne detection (it is shown that the two schemes are fully equivalent).

Subsect. 2.5 examines the measurement of the quantum sine and cosine of the phase, with a comparison

between the present quantum estimation approach and earlier treatments [7].in $ubsect. 2.6 we analyze the

homodyne detection scheme. In Sect.3 the optimal states of the field are given, which maximize sensitivity

for all the schemes of Sect.2, also indicating how to actually achieve such states.
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2 Quantum measurement of the phase

At presently it is fairly universally accepted that the quantum description of a phase measurement on

a singJe mode of the e. m. field cannot be approached by means of the usual concept of observable.

As a matter of fact, even though selfadjoint operators can be defined on the Fock space, none of them

can appropriately describe the actual statistics of phase measurements. The quantum estimation theory

of Helstrom [4] provides the most general--nonetheless operational--framework to analyze any kind of

measurement in the quantum context, and, in particular, the detection of a phase differences between

synchronous oscillators. The main ingredient of such theory is represented by the mathematical concept

of probability-operator-valued measure (POM) on the Hilbert space ?/s of the system, which extends the

conventional description by selfadjoint operators. Using a notation which is familiar to physicists--even

though not strictly legitimate from the mathematical point of view [8]-- given a set of (generally complex)
parameters z to be measured, a POM d_(z) is a self-adjoint measure with the following properties

d;_(z) > 0, /z d_(z) = i, (2.1)

where Z denotes the space of the parameters z. Eqs.(2.1) assure that using a POM one has an operational

recipe which univocally relates the density-matrlx state/} of the system to a probability distributions of

the parameters z corresponding to a particular experimental setup. In formulas one has

dP(z) = trT/}d_(z)}.

Also a set of selfadjoint operators A can be defined

(2.2)

= fz zd_Cz), (2.3)

A

and, more generally, operator functions f(A) as

= (2.4)

When the POM d_(z) = [z)(z[dz is given in terms of orthogonal [z)'s, then it corresponds to the customary

measure of the commuting observables A, whose corresponding selfadjoint operators obey the function
calculus

= (2.5)

On the contrary, the relation (2.5) no longer holds true for a generic nonorthogonal POM. As a consequence,

the selfadjoint operators ._ only provide the expected values of the parameters z, whereas the higher

moments of the probability distributions differ from the corresponding moments of the operators

themselves, and can be evaluated only through Eq.(2.2). One should notice that, despite the POM's

generally describe measurements that do not correspond to observables in the usual sense, nonetheless

there is no conflict with the basic assertion of quantum mechanics that only observables can be measured.

In fact, the Naimark theorem assures that every POM can be obtained as a partial trace of a customary

projection-valued measure on a larger Hilbert space [8] which itself represents the original system interacting

with an appropriate measuring apparatus. Upon denoting by J_(z)) E 7_s ® 7_p a complete orthonormal

set of eigenvectors of commuting selfadjoint operators acting on the enlarged space---including also the

apparatus (probe) space 7_p--the probability distribution

dP(z) = tr (/}s ® APl_(z))(_(z)l) = trs _strp (APl_(z))(_Cz)l)] , (2.6)
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correspondJ to the POM on the Hilbert space _s of the system only

_A(,) = trp (PpI_("))(¢(")I) --(_(")IPpI_(')) • (2.7)

Notice tlmt the above extensions of the system Hilbert space---hence, physically, the experimental

realisationof the POM--is not necessarilyunique.

In Subtect. 2.1 we review the quantum estimation theory of the phase which leads to the optimal POM

representing the most accurate measurement. This, however, isonly an ideal limit as no viable schemes

implementh_ such POM has been envisaged yet. Therefore, in Subsects.2.3 and 2.4 experimentally

achievable detection schemes which correspond to a sub-optimal POM (double-homodyne and heterodyne)

are analysed in detail,whereas in Subsect.2.6 the customary homodyne detection isconsidered. The latter

exits from the present quantum estimation approach, however itis in order, due to the relevance of this

scheme in any interferometric setup.

2.1 Canonical Measurement

The quantum estimation theory analyzes the possible strategies for estimating a parameter on the basis

of an error-cost-function: the optimum POM is the one which minimizes the total average cost. For a

maxlmum-likelihood criterion, the optimum POM for the phase is

e, e, l ' (2.8)= )(

[ei_) being the Susskind-Glogower phase states {7]

oo

le' ) = I"). (2.9)
n=O

It is worth noticil_ that in the present case the maximum likelihood criterion is equivalent to the Gaussian-

cost-function one for the bollnded case (sin2-cost)[4]. Such generality of the optimal POM 4/_(_) justi_les

the term Canonical Measurement here adopted for this POM approach. Also notice that the Pegg and

Barnett [3] approach is totally equivalent to the present one as regards evaluations of statistics. However,

there is no physical interpretation for the mathematical tricks on which their method relies. Some examples

of commuting pairs of seIf-adjoint operators achieving the optimum POM (2.8) on a system-probe Hilbert

space have been proposed in [9] and in [5]: however, no viable method for experimentally implementing a

corresponding setup has been devised yet, and hence the POM (2.8) only represents an ideal Limit.

Corresponding to the optimal POM (2.8) one defines the selfadjoint phase operator

¢ -i 1 (2.1o)
n_m n --

and the squared operator

/;_r Ir2 _)n-m 1= _2d/i(¢) : T + 2 _ ( in_ _)_ I-)(_1 • (2.11)
n_m

Notice that, as announced,

_'2 _ _, (2.12)

and more generally /("_) _ /(_). Such fall of the operator function calculus also holds true for the

selfadjoint operators defined through the experimentally feasible non-optimal POM's. The fact that there

is no orthogonal optimum POM for the phase, physical]y corresponds to the impossibility of defining the

measurement of the phase independently on the apparatus. This assertion clarifies and formalizes the

operational nature of the phase detection which has been pointed out by Mandel et al.in [11].
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2.2 Phase Sensitivity

Usually the sensitivity of a measurement of a parameter say z E R is assumed equivalent to the r.m.s, of

the experimental probability distribution dP(z), namely

On the other hand, the phase variable _ is defined in the bo_-_ded domain [-_', _) with 2_'-periodicity:

this peculiar property of the phase has lead many authors to the conclusion that the r.m.s, of the phase is

not the appropriate quantity to be considered as an evaluation of the phase sensitivity, claiming that it is

not invariantunder phase variabletranslation_ ---*_ -{-X. Thus, differentdefinitionsforthe sensitivity

have been adopted, which would be equivalentfor an unbounded Gaussian-distributedvariable.Here,

aftercriticalreviewingsuch quantities,we show that an operationaldefinitionof a phase measurement

procedure leadsunequivocallyto adopt the r.m.s,itselfas the correctsensitivityparameter.

a. Phase d_spersio,D[12, 13].

DispersionD isdefinedas follows

• c" (2.14)D -= (1- (cos_) 2 - (sm_)), = 1 - n+lc. ,

where en are the coefficient of the number representation of the state and the sine and cosine operators are

defined according to Eq.(2.4) as follows

c_s_ =/_., cos_ d/_(_), (2.15)

sg'¢ = sin (2.16)
d-

and coincide with the sine and cosine operators of Susskind and Glogower [7]. The definition (2.14)

follows from dementary error-propagation calculus, the phase _bbeing regarded as a function of the two

"independent variables" sin _band cos _ as follows

_b= -i ln(cos ¢ -k i sin _b). (2.17)

In Eq.(2.17) the correct logarithm branch is selected in order to obtain the desired domain for @. A part

the minor point that Eq.(2.14) would lead to dispersion D - 1 for constant distributions--instead of

A@"---_- _rz/3--the main criticism is that sin _b and cos _b cannot be considered as independent variables,

because they correspond to a noncommuting pair of operators which are jointly measured when detecting

b. Reciprocal peak, likelihood 5_[5].

The peak likelihood P(_[_) is the maximum height of the probability distribution. Its inverse, namely

- 2,r Ic,I , (2.18)
n_O

has been introduced in [5] as a measure of the width of the distribution, coherently with the ma.,dmum-

likelihood strategy used in the quantum estimation theory. Here, the following criticisms are in order: i) 6_

is aloca/ criterion, namely it checks only one point of the distribution, whereas there is no control on the

global behaviour as, for example, on the eventual occurrence of high tails. The most degenerate situation

occurs when the tails are so high that the distribution itself converges to the P(_b) = 1/2_r apart from
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onepoint with infinite probability density and zero integral [14], thus leading to vanishing 6_b instead of

fi_ = f2/3; ii) the coherence of this sensitivity definition with the maximum-likellhood strategy [5] cannot

be considered u a valid argument, in view of the aforementioned equivalence between the likelihood strategy

and the (qmmi)-Ganssian one; iii) recent numerical results [6] have shown that the simulated sensitivity

does actmdly not correspond to 6@.

c. POM r.m... (_)
Given a physical apparatus (or an ideal detector) one has a corresponding POM and, in turn, a probability

distribution dP(_b) according to Eq.(2.2). Such probability has a r.m.s, error (2.13) given by

=

Here (...) denotes the ensemble quantum average on the system space 7/s, and the operators _ and

depend on the considered POM (for the optimum POM they are given in Eqs.(2.10,2.11)). Notice that

there is no ambiguity in choosing between the two operators _b"__ _'_, because Eq.(2.19) directly follows

from the probability (2.2). For a random-phase state---namely a constant probability distribution--one

correctly has (_) = w_/3.

As regards the problem of invariance under phase shifts, here we stress that this actually is not a problem.

In fact, the only concern is the correspondence between experimental and theoretical quantities, and the

circular topology of the phase arises at both experimental and theoretical levels in the same way. Whatever

procedure is considered for measuring the phase, the information on it has always to be inferred from a

joint sine-cosine measurement, and hence the experimental equipment itself has to be tuned on a selected

21r-window. Once the domain is fixed, the experimental noise is, by definition, the r.m.s, noise on such

domain. Therefore, different choices of the 21r-window actually lead to different experimented amounts of

noise, and also theoretically the r.m.s, noise has to be evaluated on the chosen domain (hereafter we will

always use the [-_r, _r) window).

2.3 Double-homodyne Detection

The double-balanced-homodyne [11] (DBH) detection provides a way for simultaneously measuring a couple

of field-quadratures for one mode of e. m. field. The schematic diagram of the experimental set-up is

reported in Fig. 1. There are four 50-50 beam splitters and four identical photocounters, and a lr/2 phase

shifter is inserted in one arm. The mode supporting the phase is a, whereas a stable reference for the

phase is provided by a local oscillator (LO) which is synchronous with a and is prepared in a highly excited

coherent state Iz).

The DBH scheme can also perform a phase measurement, however with a probability distribution which

does not correspond to the ideal case due to unavoidable addition of "instrumental" noise. The DBH

phase distribution is obtained through the following procedure. Each experimental event consists of a
simultaneous detection of the two difference photocurrents ]1 : f_s - n5 and ]2 -- n4 - n3 which "trace"

two field-quadratures. Each event thus corresponds to a point plotted in the complex plane of the field

amplitude. The phase relative to the event is nothing but the polar angle of the point itself. An experimental

histogram of the phase distributions is thus obtained upon dividing the plane into small ("infinitesimal")

angular bins of equal width 5_b, from -_r to _r, then counting the number of points which fall into each bin.

In formulas, one has the statistical frequency P, for the n-th bin 8n _- [-_r + nS_b, -_r + (n + 1)fi_b)

1

P, : _ {# of events with I1 : pcos_b ,I2 : psin_b ,_b E 8,} , (2.20)

where p : _ + I22 and N is the total number of experimental points.
In Fig. 2, as an example, a computer simulation of the above experimental procedure is illustrated for a

squeezed state with equal number (n) = 10 of signal and squeezing photons. The experimental histogram
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Figure 1: Outline of scheme of a double-homodyne detectors

(104 events) is compared with the theoretical results from the POM for the DBH detection. This can

be obtained as follows. The difference photocurrents ]1 and ]2 are commuting operators with factorized

probability P( I1,12 ) = P( I] )P( Iz ). Introducing the reduced current I = ] / [zl for each homodyne detector,

one has the probability distribution in terms of the Fourier-transform of the generating function for the

moments (eIAf)

P(I) = ['_I'Id__A__tr{/_ei_(f_T)}.
J-,riz I 2_r

The phase distribution is the marginal probability integrated over the modulus p

_0 °°
P(_)= pdpPx(pcos4,)P_(psin4).

(2.21)

(2.22)

Using Eq.(2.21) one has

[ d_ du
eilJ(Ii-pcos4,)+iv(I_-psin4_)}/--'_[i ['rl.l tr{/_s® @p (2.23)"° °° pdp I _ J-'rlzl 2--_P(_b)

#6s being the density matrix of the mode a (the system) and

PP = 10)(01® 10)(01® Iz)(zl (2.24)

the density matrix of the probe. Prom Eqs.(2.6,2.7) one can see that the "experimental" POM is obtained

upon tracing over the probe Hilbert space 7/p, thus obtaining the operator which acts solely on the system
space 7/s

/0_ ° ['_1*1 dp ['rlzl du trp{[s @/_p ei/J(I'-Pc°s4)+it'(I_-psin_b)}. (2.25)d_D(_b) = d_ pdp J-,rlz[ 2"-_J-.[z[ 2--_
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Figure 2: Computer simulation of the DBH experimental procedure for a squeezed state with equal number

(n) = I0 of signal and squeezing photons. The experimental histogram (104 events) is compared with the

theoretical results from the POM in Eq.(2.26)

Using the coherent state resolution of the identity, the following closed formula is obtained (the detailed

derivation is reported in the appendix)

, . .+m 1)
dpD(¢) =; _ e,(n-m)_l"( 2 -t-

.#,. _ I,'-}{,',',I, (2.26)

where r(z) is the Eulero's gamma function.

The POM in Eq.(2.26) for the DBH detector corresponds to an effective measured phase operator which

is given by

_D = / _ df4D((_) = -i _ (_),-m
n_rn

and the squared one

A / _.2_2D -- qb2 df_D(_) = T + 2 _ (_)n-m 1
hera (n -- rrlt)2

1 I'(_-_'2m+ 1)
.-., _ l,,)<+ml, (2.27)

r(-_-+_-+ t)
l.){,+r+l, (2.28)

A

needed for evaluation of the instrumental sensitivity (A_)). For any state of the mode a one can simply

verify that

{A_)) _> {A_2), (2.29)

namely the DBH scheme adds extrinsic instrumental noise, as it does not implement the optimal canonical

measurement of the phase. However, we stress again that the DBH detection is the best available method

for detecting the phase. In Fig.3 a comparison between the canonical (ideal) and DBH (feasible) phase

probability distributions is given for the same state of the computer simulation in Fig.2, showing that the

former is sharper and higher than the latter.
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Figure 3: Comparison between the ideal and double-homodyne phase probability distributions for the same

squeezed state of Fig.2

2.4 Heterodyne Detection

The first proposed method to perform simultaneous measurements of two field-quadratures was the

heterodyne detection. Here we synthetically analyze this scheme, only in order to make a connection

with the double-homodyne detector and show that that the two apparatus are completely equivalent from

the point of view of the measured physical quantities. The input field EIN impinges into a beam splitter

and has nonzero photon number only at the frequency w0 + WlF. The local oscillator works at the different

frequency w0, and the output the photocurrent IOUT is measured at the intermediate frvquency a_XF. The

measured photocurrent is given by

I'OUT(t) = JEOUT(t)F,+UT(t), (2.30)

where E + denote the usual positive and negative frequency components of the field. The component at

frequency _IF is given by

IOUT(WlF) -_ f dt ]our(t)e i_let

/ dwEouT(_ ÷wlF)E_uT(w). (2.31)

For a nearly transparent beam splitter, and in the limit of strong LO in the coherent state Iz) one can
define the reduced complex current

Y -- lim 7-1]OUT(WlF), (2.32)
,, -. 1,I'1-"oo

---- cost.
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where 7 = ]zi_ • In this limit the expression of _ is given by

= lzl-X(d,bz+ aib])÷ v ishing terms, (2.33)

where the subscript a, I and i refer to the signal, LO and image component of the field respectively, a are

signal modes, b the LO modes, and the vanishing terms denote operators which do not give contributions

in the strong LO limit. In the double-homodyne in the same limit the role of the complex current (2.33)

is played by

= + = I 1-' + (2.34)
where subscript I refers to the input signal and subscript 2 to the local oscillator, whereas b0 is the vacuum

mode at the unused port of the beam splitter which contains the input signal. The fully equivalence

between heterodyne and double-homodyne is apparent when comparing Eq.(2.33) and Eq.(2.34). As in

the double-homodyne case, now the real and imaginary parts of the current trace the two conjugated

qusdratures a,_ and a,q_+f/2 of the signal mode. In [16] the POM of the heterodyne detector has been
derived in a different context, leading to the same resuit obtained for the double-homodyne in Subsect.2.3.

We notice that the actual sources of extrinsic added noise are the vacuum modes a_ for the heterodyne

detector and b0 for the double-homodyne: the other vacuum modes are totally irrelevant in the limit of

strong LO.

2.5 Measurement of the phase quadratures

The PDM approach naturally leads to well defined operator functions of the phase which obey the

trigonometric calculus at the operator level, and, hence, also at the level of expectation values. In particular,

the sine and cosine operators are defined as in (2.16). Such definitions coincide, in the case of optimum

POM, with the sine and cosine operators _ and _ introduced by Susskind and Glogower [7]

1 . I(__ + _+), (2.35)= =

where _± denote the raising and lowering operators _+Jn) = In + 1), __ _ (_+)t. Notice, however, that

this equivalence between operators fails for higher powers, namely

A _n "_ for n > I (2.38)_n _ cos" _, _ sin n _,

Here some remarks are in order, regarding relevant differences between a conventional measurement of a

single phase-quadrature--say the cosine _---and a joint measurement of both sine-cosine qusdratures which

have been analyzed in previous Subsections. A single phase-quadrature measurement leads to violation of

the trigonometric calculus for expectation values. In fact, for a general density matrix state _ one has that

Tr[_(_2+ _)] = 1 - _(OI,olO), (2.37)

whereas fora jointmeasurement one obtains

Tr[_(sin2_b ÷ c_s2_b)] = 1. (2.38)

We stress again that, however, the linear operators coincide in the two cases, and thus one gets the

same average values. However, the probability distribution of the outcomes from single phase-quadrature

measurement exhibits unphysical features for nonclassical states, whereas the probability distribution from

the joint measurement does not. In the single-quadrature measurement one has

P(c) = tr(Dlc)(cl}, (2,39)
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wherethe eigenstatesof _ are given by [7, 15]

I_)= (1 - c2) -_/4 _ sin[Cn + 1) arccos olin)
n-.r_O

On the other hand, the ILadon-Nikodym derivative of the joint measurement POM's leads to

P(_) = 'n. [_d_.(_)_] 1(1 -c2)-½ _(_l._l,',)e_[i(,',- _)arccosc]
t dq_ dcJ =_

n_m

for the optimum POM case, whereas for double-homodyning one obtains

PCc) = _ [_d/iDCq_)d_] = 1(1_ c2)_ } _(_l_ln)r(_'_ + 1)
t d( dci _

n_m

(2.40)

(2.41)

exp [i(n - m) arccosc] . (2.42)

The differences between the single-quadrature and double-quadrature probabilities become striking for

isotropic states, as, for example, the vacuum or a general number state. In this case the above distribution
should be compared with the Itadon-Nikodym derivative of the constant distribution

1 1
P(c) = (2.43)

_r ldT'Z__c2'

which is a concave function and has poles at the c = +I stationary points of the cosine. The probabilities

(2.41) and (2.42) coincide with (2.43) for number states, whereas the probability (2.39) has the opposite

curvature for the vacuum state, and oscillates fastly around the function (2.43) for nonvacuum number

states. These undesired physical features disappear for highly excited coherent states, where, however, the
main quantum features are lost.

2.6 Homodyne Detection

This Subsection is devoted to the customary homodyne detector, which, despite it exits from the present

phase estimation treatment, however it is the most relevant device in any interferometric setup. Actually,

the homodyne detector belongs to the class of the zero-point measurement schemes, and thus /s not a

measurement of phase. The balanced homodyne scheme measures one quadrature of a field mode, which

in turn is related to its phase difference with respect to the synchronous LO. Generally one is interested
in the measure of the phase shift X of the signal state

I_),_= exp(-ixh)l_b)o,

where, without loss of generality, the input state is assumed of the form

(2.44)

oO

I¢)o = _ c.l.), c. _>o. (2.45)
n=0

The expectation value of the quadrature is given by

oo

(&¢)x= _ "V/n+ icncn+,cos(_b- X) = (&o>ocos(( - X)"
n=O

(2.46)

The quadrature _ is proportional to the cosine of the phase with a proportionality "constant " {d0)0
which can be evaluated from the knowledge of the fixed input state. Notice that, however, when the

present scheme is regarded as a measure of the phase of the state I_)x itself the state-depending "constant
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" is unknown, and it cannot be preventively measured without destroying the information on phase.

In this cue the only point which does not need any knowledge of the "constant" is the _ - X = f/2

point, namely just the maximum-derivative zero-current working point. Thus, it is not possible to detect

a arbitrary phale difference, the sensitivity depending on the particular input signal, whereas a suitable

feedback mechan]am is needed to follow the working point. A convenient description of the homodyne

detector in view of the above considerations is given in [17], where the zero-point (zero-field) probability

distribution is revisited as a sort of a phase probability distribution.

The phase _asltivlty of the homodyne detector can be straightforwardly obtained from error propagation

calculus using the relation

6_= _15<a_)I-II6_b ' (2.47)

which is customary in the literature on ]nterferometry. One can see that the _ - X = _r/2 working point

minimizes lenJitivlty.

3 Optimal states for phase measurements

The design a phase measurement needs optimization of both the detection scheme and of the quantum

state which carries the phase information. The former is the main task of quantum estimation theory,

which lea_ to an ideal scheme to be compared with the feasible ones. The latter, which is the main

concern of this Section, depends on the detection scheme itself, and should account for the actual physical

constraints, mainly the total power impinged into the state. Therefore, the problem is that of optimizing

deJ

_r----x'------

the r.m.s sensitivity A_ _/(_'_2> for fixed average photon number, and depending on the particular
detection scheme.

In the following we consider, without loss of generality, a zero average phase state, with real coefficients on

the number basis, namely

oo

I¢>= c. l-> c. a (3.z)
n._0

The state optirni_.ation problem is to minimize a quantity of the form

_r 2

(A_2) : ___ + 2 _ An,m CnCm, (3.2)
n_rn

with the constraints

O0 O0

21, -- {,,> (3.3)EC n = __--

n=O n=O

The (real symmetric) matrix A = {A,,m} depends on the detection scheme. In particular, for n _ m one

has (A.,. - 0)

(_).-m
An,m = (n - m) 2' (canonical) (3.4)

+ z)
An,m - (n- m) 2 _ (DBH). (3.5)

The method of Lagrange multipllers reduces the problem to that of minimizing the following expression

2 1 + _ nc 2 fi (3.6)F({c,,};A,_lfi)- V + 2 _ A,,,,,, c,,c., + A c. -
n_m n=0 \n=O
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with respect to {c,}, )_ and/9 being the Lagrange multipliers. The variational problem (3.6) is that of a
quadratic symmetric form and is equivalent to the elgenvalue problem

(M(/9)+ _I).c = 0

for symmetric matrix M = {Mnm} given by

,91 (3.7)c -- (cO,el,...),

M.,,,,= Anm+ 6.m_- • (3.8)

Eq.(3.7) for the matrix (3.8) can be numerically solved upon suitable truncation of the l-lilbert space

7_,. The absolute minimum corresponds to eigenvalue _ = z-2/3, and fi E [0, dimT_,/2] turns out to be

a decreasing function of the running parameter _ E [0, i]. Notice that one should consider only average

values fi <: dimT_,/2, such that the number distribution has vanishing tail at n = dimT_,, in order to avoid
undesired numerical boundary effects.

f | • | • II • I • | t° ii

I ,,,,.0., ]
I

t@
i

-0.4 -0.2 0 0.2 0.4 80

i . , • , •

t...\_ -- DOuble-HOmOdyne

,
20 40 60

o

o

¢/w n

Figure 4: Phase and number probability distributions of an optimal states of fi = 20 for both ideal and
DBH detection

3.1 Canonical Measurement

For ideal measurement of the phase, the best phase states obtained through the above optimization

procedure, lead to the simple power-law

1.36 + 0.01
A@,-, _.].oo+o.ol ' (3.9)

in agreement with results of [18]. The proportionality constant actually increases very slowly as a function

of fi, and one has a variation of few percent for two decades of A_. Eq.(3.9) can be compared with the

result of [18], and with the theoretical bound A_b _ i/(efi) [19] obtained by means of information-theory

arguments. One should notice that essentially the same result can be obtained for large fi (fi > I0) using
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squeesedstateswherethesqueezingphotonnumberis optimized as a function of the average total number.

It turns out that the optimal states have only ,_ 3.7% of squeezing photons (see Fig. 5). This result is
quite different from the customary 50_ optimal squeezing number (which also holds true for the homodyne

sensitivity of the Mack-Zehnder interferometer [20]).

V

A

o

|ill

Double-Homodyne

0 . , . I , , , , I .... I ....

o 50 100 150 200

<n>

Figure 5: Optimal squeezing photon number as a function of the average total number for both ideal and
DBH detection.

3.2 Double-homodyne

As expected, an actual measurement of the phase does not achieve the ideal sensitivity (3.9). In the case

of double-homodyne (or equivalently heterodyne) phase detection, the resulting power-law is

(1.00+0.01) (3.10)
A_O = _0.65+o.01 '

which is obtained by munerically solving Eq.(3.7) for matrix M given in Eqs.(3.8) and (3.5). In Fig. 4 the

optimized states for both canonical and DBH detection are compared for an equal fixed average photon

number _ = 20. One can see that the number and phase probability distributions are qualitatively similar,

however the DBH optimum states are slightly sharper in the number distribution and larger in the phase

one. Also the best DBH states are essentially indistinguishable from squeezed states which are optimized

in the squeezing photon number as a function of the average total number (see Fig. 5). In this case, only

less than _ 2_ of squeezing photons turns out to be optimal.
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Figure 6: Uncertainty product versus the average photon number for optimal states.

3.3 Helsenberg Uncertainty Product for phase quadrature

The customary Heisenberg uncertainty relation

(3.11)

refers to the situation in which the quantum system is prepared in a state with fixed uncertainty say AA

and the other observable/_ is measured. For the case of a joint ,4-/_ measurement, however, a generalized

uncertainty relation hold, where the 1/2 factor on the right side of Eq.(3.11) is dropped, corresponding to

an added noise of 3 dB [21]. For the phase-quadratures one has the commutation relation

i
[_,s]= -_ I0)(01,

corresponding to the joint-measurement uncertainty relation

(3.12)

1

_c_s _ _I<_I0>I2. (3.13)

In Eqs.(3.11) and (3.13) the uncertainties are defined in the usual way, namely ZIO 2 = (0 2) - (0) 2. On the

other hand, in the POM approach the correct uncertainty (namely the measured quantity) is defined as

AO 2 : (O"2/- (012, where O"_ _ 02 is defined as in Eq.(2.4). In general, by means of Schwartz inequality,
one obtains

(oq>_ (0)2_>(02)_(0)2. (3.14)
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PlmN-_

States

[5])

Optb_,.b,ea
Squeesed,

States

Ideal detection

(ln4)_fi-_

Double-homodyne

(½t_)]n-_

Homodyne

1 --I

_oq/_ = 50%

Ideal Sine detection

_-½

Table 1: Asymptotic sensitivities versus the average photon number (results from numerical calculations

are given with error estimation)

Therefore, one should not expect that the optimum states for phase detection achieve the minlmnrn

uncertainty product (3.13), even though phase detection corresponds to a joint sine-cosine measurement.

In Fig. 6, the mlnlmnm uncertainty product in Eq.(3.13) is compared with the actual uncertainty product

of the optimal states for canonical measurement. One can see that the minimum uncertainties are

never achieved, despite canonical detection is idea]. In the same figure the uncertainty product of the

optimal states for DBH detection is also reported for comparison, showing additional noise due to nonideal

measurement.

3.4 Homodyne detection

For homodyne detection the well known sensitivity A_ : 1fi-1 is achieved only near the zero-current

working point. As a consequence, it happens that it is better than the sensitivity achieved by the true

phase measurement, either in the double-homodyne or the ideal case itself. This is due to the fact that the

measurement of the field-quadrature near the zero-current working point partially underestimates the tails

of the phase distribution at _ = -i-_r. The latter are enhanced by large squeezing, and thus one also finds

that the optimal number of squeezing photons is only a few percent of fi for the true phase measurements,

whereas it is 50_ for single homodyning. It is interesting to notice that the measurement of a single

phase-quadrature, say sin_b, also exhibits a small optima] squeezing fraction (,-_ 5%), as, in some sense, it

is more faithful observable than the field quadrature. In Tablel the above results are reported along with

the phase sensitivity for other quantum state and different detection schemes in the limit of large average

photon numbers ft.

4 Conclusion

We have analyzed ideal and actual detection schemes for the quantum phase. We have also considered the

homodyne detectors as it can be used as zero-phase measurement apparatus. The working conditions for a

phase detectors have been discussed showing that in an actual measurement the phase shift corresponds to

the polar angle between two real output photocurrents. We have analyzed in detail the double-homodyne

scheme of [11], giving the POM of the apparatus. The equivalence of this schemes with heterodyne one in

detecting the phase it has also been shown.

A critical revision of various adopted definitions of sensitivity has been reported, we have concluded that

the usual r.m.s, noise is the right quantity to be considered.
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The sensitivity of all the detection schemes has been optimized at fixed energy with respect to input

quantum states of radiation. We have shown that the sensitivity versus the average photon number fi is
bounded by the ideal limit Aqb ,,_ fi-1 whereas for double-homodyne detection the bound is A_bD ,_ fi-2/a

in between the shot noise level A_b ,,_ fi-]/2 and the ideal bound. The optimal states achieving the best

sensitivity for fixed energy have been numerically obtained, and we have shown that they are very close

to coherent states weakly squeezed either for ideal detection or for double-homodyne. This result, which

is in contrast with the 50% of optimal squeezing photons for single-homodyning, is due to the sensitivity

of the double-homodyne detection to the whole phase distribution including tails, which are enhanced by

increasing squeezing.

Appendix: Evaluation of Double-Homodyne POM

The phase distribution is the marginal probability integrated over the modulus p, namely

t, oo

= jopdpPl(pcos )P2(psin ).

Using Eq. (2.21) one has

_0oo f¢lzl d___f*h, duP(ck) = pdp J-_lzl 2x J-¢lzl 2-_

jbs being the density matrix of the mode a (the system) and

In Eq.
_Hows

tr{_p ® Ps ei"(:_t-p cos¢)+i,,(:_2-p sinca)} ,

(A.1)

(A.2)

= ]0)<ol® 10)<01® Iz)<zl (a.3)

the density matrix of the probe. From Eqs. (2.6) and (2.7) one can see that the POM is obtained upon

tracing over the probe Hilbert space 7_P, thus obtaining the operator which acts on the system space 7"/s

only

f°° t '¢lz[ dP2¢,t_,dzIf_l=l2"--_dv eiu(:_'-Pc°s¢}+'(_l-psln¢)}, (A.4)d_D(gP) = ddpJo pdp J_,rl, I trp{pp ® is

Using the coherent state resolution of identity one has

d_D(qb) = dek pdp J-,[z[ 2x j_,lz[ _ _ T

where R is the matrix element

R = (,,, z, 0,010tei0a_+_t2)010, 0, z, w). (A.6)

(A.6) 0 denotes the unitary evolution operator of the detector, which acts on the state (A.6) as

i i I0lo, O,z,w):l (z+w),fi(z-w),fi(iz+w),fi(iz-w)). (A.7)

The explicit expression of the matrix element R is given by

t.R = -Iz12- l,,12- l 12+ lzl 2 cos] +cos + za isin +isin

+ _w_, isin isin v 1 p v
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Takingthe strong LO limit [z[ --* co and introducing the complex variable a - ½(v + ip)e _ars(`) one gets

R=exp [-11u,2- _l., 2 - faf_ + a_-w._ + w_l= _ _(ulatfa)_-a{al-) • (A.9)
p----0

Substituting Eq.(A.9) into Eq.(A.5) leads to

/5 £+C + -i--e -'_('°°'_'in+) _
p=O

1 lap t 2 pdp --exp(p_e_+)la)(alei"_ exp(pa+e -_) _P.= d+ _2,- ,-

]o'? .,+><+,.Io><-°I+,]o Io><oI
(A.t0)

Ufing the coherent resolution of the identity and integrating over p one obtains

(-+) - e t - J 1)a,,+e++,+a,,,,+<_-e++,+,a,, (A.tt)
df_D(_b) = 2+ _-_oN= m..=o nlm[ '

where F(z) is Etdero's Gamma function. The normal ordered representation of the vacuum state

oo [ _p
,. X-_ ,_--E] +pt+p

_m p=?=o=_a. _ - 10)(01, (Aa2)

d_b oo r r_+m 1) ....
d/_D(_b)= _-_ _ (-i)"-mei("-m)+' t ,',trot2+ e'+"a"+lO)(Ola"e+" . (A.13)

leadsto

From Eq.(A.13) one obtainsthe POM of the detectorinform ofa doubleseries

d+ • _ _"--+-+- i)

,,,-, _ In)(ml • (A.14)

Alternatively, using the r-function integral representation one can write

fo;dP,+-_e_ `'°t fo°+d_o(+) = d+ lO)(Ole,+-.,,, dq_ pdp Ipe'+)(pe++l
I" 7t"

(A.15)
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